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A B S T R A C T   

This work considers observed changes in tropical Pacific Ocean rainfall amounts and the influence of climate 
variability cycles upon them. Observations were taken from the Comprehensive Pacific Rainfall Database 
(PACRAIN), using strict data selection criteria of >99% data completeness from eight locations for the period 
1971–2017. These data were used to analyze temporal and spatial rainfall patterns based on several indicators 
that considered rainfall amount and frequency, 95th percentile extreme rainfall events, and length of consecutive 
rain/drought events. These indicators were also computed using satellite-derived observations from the Global 
Precipitation Climatology Project (GPCP), as a means to compare gauge-based values with nearby estimates from 
the GPCP product. Results show a temporal pattern that tended towards a reduction in rainfall amounts and 
frequency across the tropical Pacific Ocean. The impact of phase changes of the Interdecadal Pacific Oscillation 
(IPO) was also examined. There was some evidence of the impact of the IPO, as well as of the El-Niño Southern 
Oscillation (ENSO), when seasonal and monthly trends in these indicators were analyzed. Comparison of the 
temporal patterns observed from the rain gauges with the trends computed using the GPCP estimates showed 
inconsistencies that varied considerably when comparing trends calculated at different island locations. Future 
work should consider further comparison of GPCP and gauge-based rainfall trends, as well as the attribution of 
climate change and other climate variability cycles to these trends.   

1. Introduction 

1.1. Scope of the current study 

There has been much concern in recent decades regarding changes in 
global rainfall patterns. These changes have been in part attributed in 
some locations to observed increases of global average temperature, 
which are known to affect water transportation within the hydrological 
cycle, and therefore the temporal and spatial distribution of rainfall 
(Trenberth, 2011). Changes to the spatial and temporal patterns of 
rainfall are vital to understand from the perspective of planning and 
management of water resources, especially for vulnerable nations that 
struggle to meet water demands for economic productivity and domestic 
demand (Greene et al., 2007). 

One such vulnerable location is the tropical Pacific Ocean. Many of 
the Small Island Developing States in this region depend largely on ex-
ports of agricultural goods and natural resources to maintain their 
economies, so a long-term change in rainfall patterns poses a palpable 

threat. This threat is a consequence of much of the Pacific islands’ 
agriculture being rain-fed, thus making them more prone to impacts of 
long-term changes in rainfall amount and variability. As such, studies 
have sought to quantify observed changes in total tropical Pacific rain-
fall amounts, as well as duration of droughts/floods and extreme rainfall 
events. Some of these studies used a large geographical scope, such as 
work by Kruk et al. (2014) that analyzed changes across the entire Pa-
cific Ocean over the 20th Century. Other rain gauge-based studies 
focused exclusively on the tropical Pacific Ocean. McGree et al. (2014) 
looked at changes in rainfall amounts at 68 rain gauges from 1961 to 
2011 in island groups across the Western Pacific Ocean. Despite largely 
inconsistent rainfall trends across the region of study, there was evi-
dence for statistically significant (p < 0.05) reductions in rainfall 
amounts of up to 450 mm decade− 1 in the subtropical South Pacific over 
the observational period. Similar results have also been identified by 
studies that have examined smaller geographical regions, such as a study 
by Frazier and Giambelluca (2016) that considered rain gauge obser-
vations in the Hawaiian Islands from 1920 to 2012. This study showed 
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rainfall reductions to have occurred across 90% of the islands’ land area, 
particularly on the western half of Hawaii Island itself, possibly due to a 
significant increase in volcanic haze. 

The current study is a successor to Greene et al. (2007), continuing 
their work in analyzing rain gauge-based historical tropical Pacific 
rainfall trends and considering their relationship with climatological 
features, such as the Interdecadal Pacific Oscillation (IPO) and the El 
Niño-Southern Oscillation (ENSO). Given the concerns of rain gauges 
being susceptible to various measurement errors, and the potential in-
accuracy in using them to infer rainfall trends across larger domains, this 
study has chosen to compare these rain gauge-based observations to 
outputs from the Global Precipitation Climatology Project (GPCP), a 
dataset that combines rainfall observations taken from satellites and rain 
gauges (Adler et al., 2003). The intent of the current study is therefore to 
update and refine studies of rain gauge-based historical rainfall trends, 
by combining an analysis of several rainfall indicators with an 
adequately strict data completeness criterion, whilst also comparing 
these results to those obtained from a secondary data source, i.e. the 
GPCP product. 

1.2. Literature overview 

There have been previous studies conducted over the last 20-plus 
years that examined rain gauge-based rainfall trends across the trop-
ical Pacific Ocean. Morrissey and Graham (1996), for example, exam-
ined rainfall trends obtained from 250 atoll and island-based locations 
across the tropical Pacific Ocean from 1971 to 1990. Results from 
Griffiths et al. (2003) very much agreed with those of Morrissey and 
Graham (1996), having used rain gauge observations from 1961 to 2000 
to find increases in rainfall predominating over the central tropical Pa-
cific, with reductions further to the south. This study, along with more 
recent examples such as Greene et al. (2007) and McGree et al. (2014), 
commonly examine long-term rainfall trends using a range of indicators 
alongside changes in monthly or annual rainfall amount, such as ex-
tremes in rainfall frequency and amount, and consecutive days with and 
without rainfall. Such analysis affords a more holistic picture of histor-
ical rainfall climatology across the tropical Pacific Ocean. For instance, 
Greene et al. (2007) found that reductions of annual rainfall amount 
occurred consistently to the south of the tropical Pacific Ocean, as also 
observed by Griffiths et al. (2003) and Morrissey and Graham (1996). 
This latter study also found these reductions to be simultaneously 
associated with a decrease in the frequency of rainfall events and an 
increase in the proportion of rain that falls during heavier rainfall 
events, thus attesting to a pattern of a reducing annual rainfall amount 
occurring in heavier, shorter periods of time. However, these older 
studies possess shortcomings that condone an update to historical 
rainfall trends over this region, whether being a lack of enlisted obser-
vations beyond the year 2000 (Greene et al., 2007), data completeness 
criteria not being strict enough to capture true observed rainfall trends 
(e.g. McGree et al. (2014) using a completeness criterion of 80%), or the 
study’s observational period being relatively short (i.e. shorter than a 
climatological period of 30 years) owing to limited rain gauge obser-
vations (Morrissey and Graham 1996). 

The decision to use rain gauges in studies of tropical Pacific rainfall 
trends is motivated by two factors, one being their ability to measure 
rainfall amounts directly (Bell and Kundu 2003), as well as rain gauges 
being associated with well-understood measurement errors (Greene 
et al., 2008). Rain gauges placed on low-elevation islands, such as the 
many atolls of the tropical Pacific Ocean, are also known to effectively 
represent open ocean rainfall trends (Lavoie 1963; Janowiak et al., 
1994; Morrissey et al., 1994), hence their common usage in this region. 
This effectiveness can be attributed to land-based rainfall being more 
susceptible to orographic influences, something that open ocean rainfall 
does not experience due to lack of high elevation (Morrissey et al., 
1995). The ability of atoll-based rain gauges to better represent 
open-ocean rainfall trends has led to some studies, such as Greene et al. 

(2007), selecting datasets based on rain gauge elevation as a proxy for 
orographic effect potential. Several studies have, conversely, attested to 
the influences of orography on rainfall trends across the Pacific Ocean. 
Salinger et al. (1995) found in their use of principal component analysis 
that historical rainfall trends across the islands of and surrounding New 
Zealand were not consistent with each other, which the authors partially 
attributed to local orographic differences. Similar patterns have been 
observed over more tropical locations. Across Hawaii for example, 
Frazier and Giambelluca (2016) identified varying spatial patterns of 
rainfall trends across different orographic conditions and also across 
different climate forcings, such as different ENSO phases. 

This orographic influence also exists for much smaller islands. 
Hopuare et al. (2015) examined observed rainfall amounts from 1961 to 
2011 at nine rain gauges across French Polynesia, and found that the 
effects of orography on the island of Tahiti are sufficient to produce 
notable differences in rainfall amounts on the island’s windward and 
leeward sides, with the former experiencing larger inter-annual amounts 
during El Niño events. Despite these aforementioned studies attesting to 
orographic effects potentially having an important influence on 
long-term oceanic rainfall trends, the magnitude of this influence could 
be somewhat limited. In their analysis of several indicators of rainfall 
trends using rain gauge observations, Griffiths et al. (2003) found a lack 
of statistically significant differences (p < 0.05) in rainfall trends 
recorded on tropical Pacific atolls versus larger islands, regardless of the 
indicator enlisted. This result supports the usage of rain gauges to assess 
long-term rainfall trends in this region, since observations collected on 
larger and/or more elevated islands still seem to represent these trends 
effectively, hence their inclusion in more recent studies such as McGree 
et al. (2014). 

Although there are good reasons to use rain gauges as a data source 
for analysis of rainfall trends, they do possess notable drawbacks, such 
as their small spatial coverage and the consequent need to infer rainfall 
trends in the gauges’ surroundings (Bell and Kundu 2003). A common 
alternative in capturing long-term rainfall trends is therefore to enlist 
observations collected by satellites. The Tropical Rainfall Measuring 
Mission (TRMM) is an example of a rainfall measuring product that 
existed to collect satellite-based observations of rainfall over the planet’s 
lower latitudes (NASA TRMM, 2015). Satellites’ greatest advantages 
over rain gauge-based observations are the consistency of their spatial 
and temporal coverage when measuring rainfall amounts, and the 
elimination of error from human sources, or ground-based sources such 
as wind and evaporation (Maggioni et al., 2016). For this reason, sat-
ellites have been used to characterize rainfall trends over the tropical 
Pacific Ocean in many previous studies. Luchetti et al. (2016) describe 
the use of outputs from two years of PERSIANN-CDR infrared satellite 
observations, in order to create an atlas of rainfall changes associated 
with ENSO for a collection of Pacific islands. Many other satellite-based 
studies concerning the nature of tropical rainfall trends have also 
focused on a few years of observations. Adler et al. (2000) enlisted 
outputs from TRMM to illustrate changes in global rainfall patterns (in 
mm day− 1) during and following the 1998 El Niño event, and Sor-
ooshian et al. (2002) enlisted two years of outputs from PERSIANN-CDR 
to describe diurnal variability of rainfall patterns at various locations 
across the tropics. 

More pertinently to the current study, satellite observations have 
been occasionally used to describe rainfall patterns over longer periods 
of time. However, satellites are often limited by the short length of their 
observational records, therefore limiting their suitability for illustrating 
such long-term rainfall trends (Hughes 2006). Satellites are also prone to 
underestimating extreme rainfall amounts, as mentioned by Kruk et al. 
(2015) in their study of satellite-based Pacific Ocean rainfall trends from 
1988 to 2012. This study of extreme rainfall frequency found statisti-
cally significant increases (p < 0.05) to have occurred in the western 
tropical Pacific, with smaller decreases in the central and eastern trop-
ical Pacific. This result is not consistent with that of Greene et al. (2007), 
a study that evaluated the same indicator using rain gauges. It should be 
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clarified that these two studies did not possess the same observational 
periods, allowing climate variability cycles to potentially explain the 
difference between them. As such, it is common practice for studies that 
examine satellite-based rainfall trends to corroborate results using rain 
gauge observations (Bowman 2005; Hughes 2006; Salio et al., 2015). 
This approach provides an opportunity in the current study to not only 
update the region’s rain gauge-based rainfall trends, but also to compare 
results using two different rainfall measurement approaches. 

Several studies of tropical Pacific rainfall trends (Greene et al., 2007; 
McGree et al., 2014; Kruk et al., 2015) have sought to describe the 
climatology of rainfall observations and subsequently suggest processes 
within the climate system that could be contributing to these trends. 
Rainfall amounts across the tropical Pacific Ocean are greatly influenced 
by the Inter- Tropical Convergence Zone (ITCZ), a band of 
near-equatorial deep convection that produces notably heavy rainfall. 
The ITCZ’s mean state is one of remaining slightly to the north of the 
equator (Raymond et al., 2003). Annual variation at this latitude occurs 
due to hemispheric differences in energy content (Broccoli et al., 2006; 
Kang et al., 2008; Schneider et al., 2014), which is amplified by the 
water vapor positive feedback process (Clark et al., 2018). The ITCZ 
itself responds to several cycles within the climate system. For instance, 
the variability of the East Pacific segment of the ITCZ is influenced 
greatly by the near-monthly westerly passage of the Madden-Julian 
Oscillation (Raymond et al., 2006), as well as the interannual enhan-
cement/inhibition of its amplitude of convection in response to El 
Niño/La Niña events (Xie et al., 2018). Kim et al. (2020) have also 
identified a relationship between the IPO and the ITCZ, noting a 
“strengthening of the ITCZ over the warm tropical Pacific and a weak-
ening over the Atlantic and northern Brazil during DJFMAM, associated 
with the IPO pattern.” Changes in the ITCZ have important implications 
for the rainfall patterns of tropical Pacific islands in the longer term as 
well. Studies of the ITCZ’s response to climate change have shown global 
temperature increases to be associated with a narrowing (Byrne and 
Schneider 2016) of the convergence zone itself, as well as a strength-
ening of the ITCZ’s deep convection (Bony et al., 2013). These studies of 
ITCZ dynamics collectively attest to its importance in producing trends 
in tropical Pacific rainfall amounts, which would be especially valid if 
the expected changes in ITCZ width, strength, and latitude in response to 
climate change can be seen in rain gauge or satellite-based observations. 

It is important to note, however, that the ITCZ’s influences on rainfall 
are perhaps more important for the northern half of the tropical Pacific 
Ocean, given its typical latitudinal position over this region remaining 
between 2◦N and 9◦N in recent years (Schneider et al., 2014). Rainfall 
trends in the southern half of the tropical Pacific Ocean, especially its 
western side, are largely influenced by movements of the South-Pacific 
Convergence Zone (SPCZ; Folland et al., 2002; Vincent et al., 2011; 
McGree et al., 2016). Furthermore, changes in tropical Pacific sea sur-
face temperatures (SSTs) in part caused by the IPO result in a 
multi-decadal shift of SPCZ position and associated rainfall (Wang and 
Picaut 2004). It was found by both Salinger et al. (2001), and Folland 
et al. (2002) that the IPO’s positive phase (SST increase) is associated 
with a north-east shift of the SPCZ, with negative IPO phases producing a 
south-west shift. Although the periodicity of the IPO is on the order of 
decades, it has been shown to have powerful effects on the global 
climate, with work by Meehl et al. (2013) noting that the current 
negative phase of the IPO is related to the deceleration of average global 
temperature increase that was observed in the early 2000s. 

2. Materials and methods 

2.1. Data sources 

The tropical Pacific rainfall observations enlisted in the current study 
were taken from the Comprehensive Pacific Rainfall Database 
(PACRAIN) – a metadata system that compiles rainfall totals from 
hundreds of sites across the tropical Pacific Ocean. PACRAIN is updated 

every month with newly collected quality controlled rainfall observa-
tions (PACRAIN 2018; Cook and Greene 2019). The sources that 
comprise PACRAIN’s metadata are obtained from several meteorolog-
ical institutes around the Pacific Ocean (Morrissey et al., 1995). These 
sources include:  

- The New Zealand National Institute of Water and Atmospheric 
Research, Ltd.  

- The French Polynesian Meteorological Service.  
- The National Center for Environmental Information (NCEI, formerly 

the National Climatic Data Center (NCDC)). 

A fourth rainfall data source, which is unique to PACRAIN, is the 
Schools of the Pacific Rainfall Climate Experiment (SPaRCE), which 
gives educational institutions around the Pacific Ocean the equipment to 
measure rainfall amounts (Postawko et al., 1994). The combination of 
several data sources in a region that previously possessed sparse weather 
observations is a significant reason for PACRAIN’s popularity in studies 
of tropical rainfall trends. The number of observation locations within 
its metadata system has increased from around 250 in the 1990s (Mor-
rissey et al., 1995) to over 1 100 today (PACRAIN 2018). One of the 
hallmarks of PACRAIN, however, is the rigor of the quality control when 
new data are uploaded. See PACRAIN (2018), Greene et al. (2007), 
Greene et al. (2008) or Cook and Greene (2019) for details about 
PACRAIN’s data quality control. 

Rainfall observations were taken from locations with records that 
possessed 99% or greater data completeness (the criterion used by 
Greene et al. (2007)) from January 1st, 1971 to December 31st, 2017, 
where data completeness refers to the percentage of days between 1971 
and 2017 for which rainfall observations at a given location were taken. 
This range of years allows for maximum representation of rainfall trends 
that have happened during this time domain, and also exceeds the 
minimum 30-year period recommended to account for climate vari-
ability cycles that could affect tropical Pacific Ocean rainfall (World 
Meteorological Organization 2011). 

Such a strict data completeness criterion is enlisted in the current 
study in order to eliminate concerns regarding elongated observational 
gaps, as well as to better facilitate calculation of extreme rainfall in-
dicators. This criterion does limit the number of locations within the 
PACRAIN database eligible for the current study to eight, which is un-
deniably a small sample of observations for quantifying tropical Pacific 
rainfall trends. However, lowering the data quality criterion would 
jeopardize the integrity of the research and of the identified patterns. 
Elevation of these gauges was not a criterion used when selecting lo-
cations to analyze, since orographic effects on these islands were found 
by Griffiths et al. (2003) to not significantly alter measured rainfall 
amounts. Given the current study’s interest in relating observational 
trends to phases of the IPO (among other processes of the climate sys-
tem), it is also worth mentioning that this observational period contains 
a full positive (1978–1998) and negative (1999–2013) IPO phase (Meehl 
et al., 2016). As such, much of the results presented in the current study 
shall focus on these two time frames as well as trends over the entire 
observational period of 1971–2017. 

The small number of rain gauge locations that meet the data 
completeness criterion of the current study heightens the concerns of 
using rain gauges to suggest historical rainfall trends across large spatial 
domains, as well as the need to include observations from a secondary 
source. Selection of GPCP as the secondary source was based on its 
extensive use as a well-established satellite-derived and gauge-enhanced 
rainfall product (Huffman et al., 1997). Daily rainfall observations over 
the tropical Pacific Ocean were taken from the GPCP’s tertiary 1◦ lati-
tude x 1◦ longitude product, with data available from January 1997 to 
present. Whilst this period is shorter than the available rain gauge re-
cord, it is enough to cover the period of the IPO’s recent negative phase 
(Meehl et al., 2016), meaning that the available GPCP data can be used 
to corroborate the spatial patterns indicated by rain gauge observations 
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over this period of time. 

2.2. Methods used 

The names, units, and definitions of the indicators used in this study 
are summarized in Table 1. Rainfall Amount and Rainfall Frequency are 
standard indicators that give a general overview of how rainfall patterns 
across the tropical Pacific Ocean have changed between 1971 and 2017. 
Further information comes from analyzing extreme rainfall events, since 
they may affect rainfall amounts over the region more significantly, and 
thus are the events in which leaders, policy planners, and local com-
munities would be the most interested. As such, analyses of the fre-
quency, intensity, and proportion of extreme rainfall events and their 
trends were also conducted. Definitions of these indicators, as well as 
rainfall amount and rainfall frequency, are the same as those used in 
Griffiths et al. (2003) and Greene et al. (2007). In these definitions, a 
95th percentile rainfall event refers to (approximately) the 18th wettest 
day in a given year, the 5th wettest day in a given season, or the 2nd 
wettest day in a given month. Since these indicators offer no suggestion 
of changes in the severity and duration of droughts and rainfall events, 
the indicators known as Maximum Dry/Wet Consecutive Days were also 
analyzed in this study, using the same definitions as in McGree et al. 
(2014), where “measurable amount of rainfall” refers to rainfall 
amounts that are greater than 1 mm of rainfall in a given day. 

Much like Greene et al. (2007), this study computed trends across 
these seven indicators by considering them as changes per year (i.e., mm 
yr− 1, days yr− 1, % yr− 1) at each of the eight rain gauge locations. Trends 
in these indicators were considered monthly and seasonally as well as 
annually, with the intention of revealing patterns that are perhaps 
negated by considering only annual temporal scales. These trends are 
presented as spatial maps of the tropical Pacific Ocean from 1971 to 
2017, in which changes in rainfall pattern indicators at each location are 
represented by a triangle that is proportional to the magnitude and sign 
of these changes. White triangles are indicative of trends that are sta-
tistically significant at the 90% confidence level (p < 0.1), such that an 
indicator at a given location experiences a change that is significantly 
different than zero. Statistical significance at each location or grid point 
was determined based on Spearman’s Rho least-squares regression 
analysis, a rank-order, non-parametric test of a given rainfall indicator 
(Yue et al., 2002). 

An option in studies such as the current study is to conduct a field 
significance test, in which statistical significance is decided by the 
number of points in a location that possess significance exceeding the 
number expected based on random chance (Li et al., 2018). However, 

the current study is not attempting to assert widespread spatial signifi-
cance based on the results of each rain gauge location/grid point, only 
whether historical trends in rainfall indicators exist or have persisted 
when compared to those of previous work. Thus, field significance tests 
are not necessary for this study and have not been conducted. 

The current study also examines the relationship between trends in 
these rainfall indicators and the climate system processes that are known 
to influence them, namely the IPO and ENSO. As such, two sets of annual 
and seasonal maps were created using each of the seven indicators, both 
for changes during the IPO’s positive (1978–1998) and negative phases 
(1999–2013) that fell within the observational period. The same anal-
ysis was also conducted using the GPCP data, with the results presented 
as tables showing the magnitude and sign of the trends in all seven in-
dicators, as well as their differences from their corresponding rain gauge 
trends, in order to facilitate comparison between these two sources of 
rainfall observations. This comparison was only made over the IPO’s 
negative phase, given the limitations of the GPCP observational record. 
For determination of the relationship between Table 1’s indicators and 
ENSO, trends in indicators were broken down by month and presented 
as time series plots from 1971 to 2017. Due to the exceedingly large 
number of possible graphs and maps of different combinations of years, 
seasons, months, phases, and indicators, figures presented in the main 
text are those that best summarize the results of the analysis of the gauge 
and GPCP products. 

3. Results 

3.1. Annual trends in rainfall patterns 

Rainfall trends at each of the eight rain gauge locations were 
analyzed based on the seven selected indicators enlisted in the current 
study (see Table 1). Due to the lack of spatial coverage over the Tropical 
Pacific Ocean that these rain gauges afford, care must be taken to not 
overstate the significance of trends observed at individual or several rain 
gauge locations. Furthermore, the triangles in these maps represent 
differing quantities, even when considering a single indicator, hence 
each map has a unique legend. Figs. 1–3 present maps of annual rain 
gauge trends over the three observational periods (1971–2017, positive 
IPO, and negative IPO) for Rainfall Amount, Rainfall Frequency, and 
Maximum Dry Consecutive Days respectively. Statistically significant (p 
< 0.1) changes in these indicators at individual locations are identified 
by white triangles, of which there are few in Fig. 1. Despite this lack of 
statistical significance, consistent decreases of Rainfall Amount occurred 
at the majority of locations, especially during the negative IPO phase 
(Fig. 1c), with all locations but American Samoa attesting to a reduction 
in Rainfall Amount at this time. Note, however, that American Samoa is 
a geographic outlier, so that might be a partial cause of the difference in 
the patterns. These decreases persist throughout the positive IPO phase 
as well (Fig. 1b), reaching values as much as − 45 mm yr− 1 at Palau, the 
only location that possessed a statistically significant change in rainfall 
during this phase. This overall reduction weakens when considering the 
entire observational period, with five out of eight locations signaling a 
decrease in Rainfall Amount. Greene et al. (2007) and McGree et al. 
(2014) also both found that decreases of Rainfall Amount were domi-
nant over this region, especially towards the south and west. 

The trends in Rainfall Frequency are somewhat similar to those for 
Rainfall Amount, as shown in Fig. 2. Decreases in Rainfall Frequency 
occurred at all locations except for Kwajalein in the positive IPO phase 
(Fig. 2b), with some indication of increases in Rainfall Frequency during 
the negative IPO phase (Fig. 2c). The trends in the negative phase also 
seem to be much stronger than those in the positive phase, reaching up 
to − 3 days yr− 1 at Kwajalein and +3 days yr− 1 at Palau and American 
Samoa, with the increasing trends at these latter two locations pos-
sessing statistical significance. The overall patterns across both phases 
seem to be largely cancelled out when considering the entire observa-
tional period (Fig. 2a), in which no Rainfall Frequency trends exceeded 

Table 1 
Summary of the rainfall trend indicators enlisted for this study.  

Indicator Unit Definition 

Rainfall Amount mm Physical amount of total rainfall in a given year 
from 1971 to 2017 

Rainfall Frequency days Number of days on which there is a non-zero 
amount of rainfall in a given year from 1971 to 
2017 

Extreme Rainfall 
Frequency 

days Number of days on which the amount of rainfall is 
greater than the location’s average 95th percentile 
amount in a given year from 1971 to 2017 

Extreme Rainfall 
Intensity 

mm Physical amount of rainfall during ≥95th 
percentile events in a given year from 1971 to 
2017 

Extreme Rainfall 
Proportion 

% Percentage of rainfall that occurs during ≥95th 
percentile events in a given year from 1971 to 
2017 

Maximum Wet 
Consecutive Days 

days Greatest number of days for which measurable 
rainfall (>1 mm) does occur in a given year from 
1971 to 2017 

Maximum Dry 
Consecutive Days 

days Greatest number of days for which measurable 
rainfall (>1 mm) does not occur in a given year 
from 1971 to 2017  
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Fig. 1. Maps showing annual trends in Rainfall Amount (in mm yr− 1) at all rain gauge stations over the entire observational period (a), as well as the positive (b) and 
negative (c) IPO phase durations. White triangles indicate trends that are statistically significant (p < 0.1). Gauge locations from left to right: Palau, Yap, Guam, Chuuk, 
Pohnpei, Kwajalein, Majuro, and American Samoa. "Oceans" basemap for all relevant figures from ESRI (2018). 
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Fig. 2. Same as Fig. 1 but for rainfall frequency.  

J.J. Wimhurst and J.S. Greene                                                                                                                                                                                                               



Weather and Climate Extremes 32 (2021) 100319

7

Fig. 3. Same as Fig. 1 but for maximum dry consecutive days.  
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±0.4 days yr− 1. However, the strength of the Rainfall Frequency trends 
within individual IPO phases show potential for serious short to 
medium-term water management implications, with the sign of the 
Rainfall Frequency trends at individual locations during the positive IPO 
phase possessing consistency with previous work (Greene et al., 2007). 
Rainfall Amount and Rainfall Frequency are good indicators of overall 
rainfall pattern changes over the Pacific Ocean, hence the focus on these 
indicators in the current study. 

Annual trends for the other indicators show some evidence of being 
stronger in the negative IPO phase than in any other observational 
period, such as reductions of Extreme Rainfall Frequency reaching up to 
− 0.8 days yr− 1 at Pohnpei (p < 0.1). However, the gauge-based trends 
using these indicators generally lacked statistical significance, also often 
lacking consistency of sign and magnitude between proximal islands. 
Maximum Dry Consecutive Days is the only remaining indicator that 
produced trends that were either spatially consistent or statistically 
significant, as shown in Fig. 3. Most locations have experienced an in-
crease in this quantity across both IPO phases, with any decreases being 
smaller in magnitude. These increases in days without rainfall reached 
up to +0.5 days yr− 1, with these increases being statistically significant 

during the negative IPO phase (Fig. 3c) at Yap, Chuuk, Pohnpei, and 
Kwajalein. This result is opposite in sign to that of McGree et al. (2014), 
but their work analyzed trends in this indicator decadally rather than 
annually, thereby perhaps erasing smaller temporal scale changes. The 
effects of the IPO again appear to be somewhat diminished, based on the 
lack of change of trend direction between the two phases. What Fig. 3 
does highlight, nevertheless, is a notable and spatially consistent in-
crease in the number of consecutive days without rainfall recorded at 
tropical Pacific islands and atolls in the last several decades, indicating a 
drying of this region. The drying could be an overall consistent pattern, 
or possibly could be associated with an increase in wet season rainfall 
and a decrease in the dry season. 

3.2. Seasonal trends in rainfall patterns 

One of the main concerns with presenting trends in rainfall in-
dicators annually is elimination of trends that happen on smaller tem-
poral scales. For example, the wind direction changes associated with 
ENSO typically begin and are most prevalent in Northern Hemisphere 
(NH) winter and spring (Wang and Picaut 2004). The rainfall pattern 

Fig. 4. Maps showing winter trends in Rainfall Amount (a, b, c) and Extreme Rainfall Frequency (d, e, f) at all rain gauge stations over the entire observational period 
(a, d) as well as the positive (b, e) and negative (c, f) IPO phase durations. White triangles indicate trends that are statistically significant (p < 0.1). 
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changes associated with this event could be harder to identify if only 
annual trends in rainfall indicators are considered, hence the utility of 
examining seasonal trends (as well as monthly trends, see Section 3.3). 
Figs. 4–7 present maps of observed changes in rainfall indicators for NH 
winter, spring, summer, and autumn respectively, in the same fashion as 
the maps discussed in Section 3.1. For each season, results from two of 
the seven rainfall indicators have been presented, based on the statistical 
significance of results at individual locations or consistent spa-
tial/temporal patterns (e.g. the trends shown for 1971–2017 matching 
more closely to one of the two IPO phases). 

In the case of most rainfall indicators, but especially Rainfall Amount 
and Extreme Rainfall Frequency (Fig. 4), NH wintertime reductions were 
strongly favored during the negative IPO phase (Fig. 4c, f). This was 
especially true in Pohnpei, where the reduction in Rainfall Amount 
during this 14-year phase measured up to − 60 mm yr− 1, a result that 
possessed statistical significance along with those of Palau, Majuro, and 
American Samoa. It is also apparent from Fig. 4 that, despite the con-
sistency of the signs of these rainfall indicators during the negative IPO 
phase, many of these trends become much weaker or even become in-
creases when considering the entire observational period (Fig. 4a, d). 
This also suggests that there is perhaps an IPO signal in the mean state of 
the precipitation patterns as well. Given the tendency of these winter 

trends to be of opposing signs in different IPO phases, such as those of 
Palau, Guam, Majuro, and American Samoa, this weaker trend for the 
observational period could be a consequence of trends in the two IPO 
phases being cancelled out by each other. This potential influence of the 
IPO is consistent with previous literature’s expectations of the IPO’s 
influences on tropical Pacific rainfall (Salinger et al., 2001; Folland 
et al., 2002), a finding that was more difficult to detect when considering 
annual trends in these indicators (Fig. 1). Another result of interest from 
these NH winter trends was lower magnitudes when compared to annual 
trends of the same indicators, with the latter possessing trends up to 
three times greater in magnitude, especially when considering Extreme 
Rainfall Intensity and Maximum Dry Consecutive Days. This tendency 
for seasonal trends to be smaller in magnitude than those of annual 
trends, particularly for the positive IPO phase and the entire observa-
tional period, was true of all seasons. 

Differences between seasonal and annual trends also existed when 
considering seasons other than winter. Trends in Rainfall Amount and 
Extreme Rainfall Proportion in NH spring (Fig. 5) illustrate two inter-
esting results that characterized this season. Firstly, there is some evi-
dence for an east-west spatial pattern in these two rainfall indicators. 
This finding is especially true for Extreme Rainfall Proportion during the 
negative IPO phase (Fig. 5c) and Rainfall Amount during the positive 

Fig. 5. Same as Fig. 4, but for spring trends in Extreme Rainfall Proportion (a, b, c) and Rainfall Amount (d, e, f).  
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phase (Fig. 5e). In both maps, weak reductions in these indicators are 
prevalent to the west of the tropical Pacific Ocean, with stronger in-
creases further eastward. Given the association of changes to the ENSO 
index with changes in rainfall patterns (Wang and Picaut 2004), such a 
zonal gradient in rainfall is perhaps expected, but could also have 
happened randomly due to lack of spatial coverage afforded by rain 
gauges and/or the lack of statistically significant results (discussed 
further below). 

A result that occasionally appeared in this seasonal analysis is rain-
fall indicator trends over the entire observational period being more 
consistent with those of one IPO phase over another. This result was 
especially true of Extreme Rainfall Intensity in the NH summer (Fig. 6), 
in which seven out of eight rain gauge locations possessed the same sign 
when comparing maps for the entire observational period (Fig. 6d) and 
the positive IPO phase (Fig. 6e), with the magnitude range for the latter 
being slightly larger perhaps because of the negative IPO phase (Fig. 6f) 
moderating trends from 1971 to 2017. However, it is more common for 
trends in individual IPO phases (across all seasons) to have little to no 
similarity with trends over the entire observational period. This finding 
might indicate that the phases of the IPO have had little influence on 
historical rainfall trends over the tropical Pacific Ocean in the last few 
decades. 

A final result of interest when considering seasonal trends is the 
magnitude of trends produced for the same indicators in different sea-
sons. Fig. 7 shows the historical trends for Rainfall Frequency (Fig. 7a–c) 
and Extreme Rainfall Frequency (Fig. 7d–f) in NH autumn. An obvious 
feature of these maps is the lack of statistically significant results at 
individual locations, especially over the entire observational period. 
Upon closer inspection, this lack of significant trends can be attributed 
to the small changes in these indicators that have taken place, such as 
Rainfall Frequency changing by no more than ±0.08 days yr− 1 from 
1971 to 2017 (Fig. 7c). Contrast this result with those of other seasons, 
such as the range of ±0.15 days yr− 1 in NH spring (not shown), and it 
becomes apparent that the magnitude of this indicator can differ greatly 
between different seasons. This result highlights the importance of 
examining seasonal as well as annual trends in the data. Seasonal 
comparisons between IPO phases attest to a similar result, with positive 
IPO Maximum Wet Consecutive Days ranging from − 0.15 to 0.05 days 
yr− 1 in NH spring versus ±0.25 days yr− 1 in autumn (not shown). It is of 
interest that recent changes in rainfall indicators have possessed notable 
seasonal differences. Such a result is perhaps expected, given the sea-
sonal to inter-annual cycles of features that influence tropical Pacific 
rainfall, such as the ITCZ (Broccoli et al., 2006) and ENSO (Gouriou and 
Delcroix 2002), are known to possess. 

Fig. 6. Same as Fig. 4, but for summer trends in Rainfall Frequency (a, b, c) and Extreme Rainfall Intensity (d, e, f).  

J.J. Wimhurst and J.S. Greene                                                                                                                                                                                                               



Weather and Climate Extremes 32 (2021) 100319

11

3.3. Monthly trends in rainfall patterns 

As with Section 3.2, breaking down changes in rainfall indicators 
using smaller temporal scales facilitates identification of trends that may 
otherwise be obscured, especially those that are non-random (p < 0.1). 
Time series plots were therefore generated for selected months in which 
a statistically significant change in a given indicator and rain gauge 
location occurred between 1971 and 2017. By presenting these monthly 
trends in this manner, it is possible to distinguish individual years that 
make the largest contributions to changes in these indicators, such as 
years that experience an El Niño or La Niña event. Seasonal data may 
show smoother patterns, but analysis of monthly precipitation makes it 
easier to identify specific sub-patterns and changes within the data. Of 
the 87 time series plots that possessed statistically significant changes 
for a given location, month, and rainfall indicator, 60 exhibited a 
decreasing trend. Given the prevalence of these negative, non-random 
trends, it is perhaps less surprising that annual changes in some of 
these rainfall indicators presented overall decreases at the majority of 
rain gauge locations (Figs. 1–3). Fourteen of these non-random time 
series trends are shown in Fig. 8, based on their ability to best summarize 
the results of this section of the current study. 

The first notable result from these time series plots is, regardless of 
the month, location, and indicator considered, each of these trends 
possesses distinguishable inter-annual variability. This variability oc-
casionally presents itself as a multi-annual oscillation, such as for 
Maximum Dry Consecutive Days on Yap in April (Fig. 8h) and Extreme 
Rainfall Proportion on Palau in May (Fig. 8l). There is also arguable 
evidence of the effects of ENSO on these indicators, such as the high 
Extreme Rainfall Intensity in June on Yap in 1982 (Fig. 8j) coinciding 
with a strong El Niño event, as does the anomalously high Maximum 
Wet Consecutive Days in August on Majuro in 2002–03 (Fig. 8f). This 
result is to be expected, since ENSO index shifts have been observed to 
coincide with simultaneous annual-scale shifts in rainfall amount and 
location, such as that associated with the ITCZ (Xie et al., 2018), as well 
as the SPCZ to the south of these rain gauges (Folland et al., 2002; 
Gouriou and Delcroix 2002; Vincent et al., 2011). However, despite two 
notable El Niño events having occurred in 1997–98 and 2015–16 
(Kumar and Chen 2017), the presumed impacts of these events on 
tropical Pacific rainfall patterns seem to be largely absent from Fig. 8’s 
time series plots. However, we note that care is needed when inter-
preting El Niño events, since their signals are often the largest toward 
the end of the first year of such an event. Nevertheless, there is some 

Fig. 7. Same as Fig. 4, but for autumn trends in Rainfall Frequency (a, b, c) and Extreme Rainfall Frequency (d, e, f).  
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Fig. 8. Time series plots that show trends in the rainfall indicators in the current study when broken down by month and by gauge location. Each plot’s regression 
line and confidence interval (blue shading) indicate statistically significant relationships (p < 0.1), based on a Spearman’s Rho test. Indicators are presented as 
follows: Rainfall Amount (a, b), Rainfall Frequency (c, d), Maximum Wet Consecutive Days (e, f), Maximum Dry Consecutive Days (g, h), Extreme Rainfall Intensity 
(i, j), Extreme Rainfall Proportion (k, l), and Extreme Rainfall Frequency (m, n). (For interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.) 
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evidence for anomalously high Rainfall Amount totals over Kwajalein in 
May in these El Niño years (Fig. 8a), but such time series plots are in the 
minority. The effects of ENSO on tropical Pacific Ocean rainfall are 
perhaps limited on multidecadal timescales (i.e. from 1971 to 2017), 
even when examining trends in rainfall indicators by month. 

This time-series analysis also suggests that ENSO’s effects are 
inconsistent over individual tropical Pacific islands, with single El Niño/ 
La Niña events being unable to explain long term changes such as 
decreasing Rainfall Amount or Extreme Rainfall Proportion. However, 
the effects of ENSO on inter-annual variability of these rainfall in-
dicators is still of note, even if its effects are not consistently dominant, 
which agrees with findings from McGree et al. (2014). Moreover, the 
effects of the IPO on these monthly measures of rainfall indicators also 
seem to be limited, despite the multidecadal timescale of these time 
series plots. This is evident from the direction of the interannual vari-
ability that these plots possess, which given the presupposed influence of 
the IPO on tropical Pacific rainfall should have changed sometime in the 
late 1990s (Meehl et al., 2016). The importance of stochastic rainfall 
variability and climate variability cycles being unable to fully explain 
the trends of these time series plots shall be discussed further in Section 
4. 

3.4. Comparing rain gauges and GPCP outputs 

As stated in Section 1.2, it is common practice for studies of gauge- 
based rainfall measurements to enlist satellite-derived observations in 
order to compare the results from the different measurement systems 
(Bowman 2005; Hughes 2006; Salio et al., 2015). As such, the current 
study enlisted tropical Pacific rainfall observations from the GPCP 
(Adler et al., 2003), which combines satellite and rain gauge-derived 
observations into a single composite dataset. Rather than compute 
simple differences in measured rainfall, since such analysis has been 
covered by the aforementioned literature, annual and seasonal trends in 
the seven rainfall indicators were calculated using GPCP data and pre-
sented in Table 2 and Appendix A1-4 respectively. These trends were 

calculated at GPCP model grid points in proximity to each rain gauge 
location over the duration of the IPO’s most recent negative phase 
(1999–2013), such that the four grid points within 1◦ latitude and 1◦

longitude of each rain gauge location were selected. The focus on the 
negative IPO phase was motivated by the GPCP’s limited data avail-
ability, as well as the objective of comparing these trends to those of rain 
gauge data (which are also shown in these tables) over a consistent time 
frame. When comparing datasets, it is important to note the difference in 
the types or products. Sun et al. (2017) examined 30 currently available 
global precipitation data sets, including gauge-based, satellite-related, 
and reanalysis data sets. They noted “large differences in both the 
magnitude and the variability of precipitation estimates” and also 
especially, “Large differences in annual and seasonal estimates were 
found in tropical oceans.” As Sun et al. (2017) identify, “reliability of 
precipitation data sets is mainly limited by the number and spatial 
coverage of surface stations, the satellite algorithms, and the data 
assimilation models.” Similarly, it has been shown repeatedly in the 
statistical and climatological literature that, as King et al. (2013) point 
out, “gridded dataset[s] tend to underestimate the intensity of extreme 
heavy rainfall events and the contribution of these events to total annual 
rainfall as well as overestimating the frequency and intensity of very low 
rainfall events.” 

When considering Table 2 (annual rainfall trends), it is interesting to 
analyze both the extent of difference (gauge value minus GPCP value) 
between GPCP and rain gauges in calculating rainfall indicators, as well 
as the sign of the differences that occur. As before, assigning large-scale 
spatial significance to these results is inappropriate due to the small 
number of rain gauges enlisted. Furthermore, assessment of climatology 
based on the findings of these tables was avoided, since these trends had 
been computed from 14 years of rainfall observations. The indication 
from Table 2 is relatively sporadic occurrences of high or low agreement 
between rainfall indicator trends produced by GPCP and rain gauges. 
For instance, indications on American Samoa are that the difference 
between the rain gauges and the GPCP product for the Maximum Dry 
Consecutive Days trend is up to − 2 (− 1.972) days yr− 1. This difference is 

Table 2 
Observed annual changes in the seven rainfall indicators around each rain gauge location, using GPCP observations. The difference between the GPCP-derived values 
and each respective rain gauge is given, with values for both datasets taken over the duration of the IPO’s recent negative phase (1999–2013). Yellow GPCP cells 
indicate trends that are statistically significant (p < 0.1). 
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up to 0.4 (0.432) days yr− 1 on Chuuk. Differences between rain gauge 
and satellite observations is known to be high over the tropical Pacific 
Ocean (Bowman 2005), perhaps explaining the disparity in calculated 
trends seen in the current study. However, due to the spatial smoothing 
of the gridded data, caution should always be taken when comparing 
satellite or other gridded products and gauge-based data. 

Another interesting result from Table 2 is the differences between 
GPCP and rain gauge-derived trends in these indicators being smaller at 
certain locations than others. Pohnpei consistently possessed low 
disagreement between these two means of rainfall trend computation, 
when compared to the other seven locations, for Rainfall Frequency, 
Maximum Dry Consecutive Days, Extreme Rainfall Frequency, and 
Extreme Rainfall Proportion. By contrast, locations such as Palau 
experienced frequently high disagreement, with differences in Extreme 
Rainfall Intensity and Extreme Rainfall Frequency being up to − 35 
(− 34.547) mm yr− 1 and -0.9 (− 0.925) days yr− 1 respectively. The most 
likely explanation for the difference is the small-scale stochastic rainfall 
variability in this region, although satellite errors, gridding, and man-
agement could all provide explanations for this spatial disparity in the 
differences between rain gauges and GPCP trends. 

Whilst Table 2 communicates the discrepancies between rain gauge 
and GPCP-derived rainfall trends, it is of interest to know whether these 
differences vary at all by season, given the seasonality that rainfall in-
dicators obtained from rain gauges were shown to possess in Section 3.2. 
Appendices A1, A2, A3, and A4 show the same analysis as that of Table 2 
but instead for NH winter, spring, summer, and autumn respectively. 
These tables show some overall agreement that the differences between 
rain gauge and GPCP trends are somewhat smaller in NH spring for the 
majority of rainfall indicators, namely Rainfall Amount, Rainfall Fre-
quency, and Maximum Dry/Wet Consecutive Days. However, the 
occurrence of low differences in NH spring is not consistently true, 
especially in the case of locations such as Yap, where the NH spring 
difference in Rainfall Amount can be as much as − 20 (− 19.619) mm 
yr− 1, compared to its much lower autumn difference of +6 (+6.42) mm 
yr− 1. This tendency for differences in calculated trends being smaller in 
NH spring is likely to be coincidental, but could also be related to the 
nature of rainfall patterns that occur over the tropical Pacific Ocean at 
this time, given the seasonal to interannual rainfall cycles that are 
associated with the ITCZ (Broccoli et al., 2006) and ENSO (Wang and 
Picaut 2004). 

4. Discussion 

The goal of the current study was to further previously conducted 
research concerning gauge-based tropical Pacific rainfall trends, such as 
Greene et al. (2007) and McGree et al. (2014). This work builds on these 
previous studies by applying a broad collection of rainfall indicators to 
rain gauge observations selected from the PACRAIN database on annual, 
seasonal, and monthly timescales, and subsequently compares the ob-
tained results to satellite-derived products. This work also sought to 
consider the importance of climate variability cycles, and meteorolog-
ical features, as factors that could offer explanations for the observed 
trends, and extend this analysis for newly available rainfall data. It 
seems from the results of the current study that much of the trends in 
rainfall indicators that have been observed in previous studies have 
continued, namely that decreases of Rainfall Amount and Rainfall Fre-
quency, and increases in Maximum Dry Consecutive Days, have domi-
nated in the tropical Pacific Ocean over the last few decades (Figs. 1–3; 
Greene et al., 2007; McGree et al., 2014). The continuation of these 
trends has happened despite the phase of the IPO shifting from positive 
to negative in the late 1990s, a process that has been associated previ-
ously with changes in rainfall patterns over the tropical Pacific Ocean, 
especially its western side (Salinger et al., 2001; Folland et al., 2002; 
Gouriou and Delcroix 2002). There was, however, some evidence of the 
IPO having a stronger influence on seasonal trends in these rainfall in-
dicators, such as for NH summer Extreme Rainfall Intensity, based on the 

similarity between the trends observed in single IPO phases and the 
entire observational period (1971–2017, see Fig. 6d–f). In addition to 
this finding, an east-west spatial disparity in some rainfall indicators 
occurred in NH spring, with decreases of Extreme Rainfall Proportion 
(Fig. 5a–c) and Rainfall Amount (Fig. 5d–f) occurring to the east and 
west respectively. Meteorological features, such as the SPCZ, are known 
to vary in their latitudinal position due to changes in the state of the IPO 
and ENSO (Vincent et al., 2011), which could explain some of this 
spatial difference. However, what is more likely is that these particular 
results occurred by random chance, since the SPCZ tends to influence 
rainfall patterns instead over the southern half of the western tropical 
Pacific Ocean. 

Despite previous studies attesting to the importance of the IPO in 
influencing multidecadal rainfall trends in the tropical Pacific Ocean, 
this influence is not clear across the region for the data analyzed here. 
Furthermore, given the small number of locations that had sufficient 
data completeness to be analyzed in this work, it is not possible to more 
than suggest that the IPO’s influences on tropical Pacific rainfall pat-
terns have been less important than expected in recent decades. 

Breaking down changes in rainfall indicators by month seemed to 
reveal greater sensitivity to the processes known to influence tropical 
Pacific rainfall. Monthly time series plots constructed for individual 
locations (Fig. 8) illustrate an oscillating interannual variability in these 
indicators, superimposed onto a (usually negative) multidecadal trend, 
with many of these trends possessing statistical significance. El Niño 
events, based on the expected occurrence of above-average rainfall to-
tals in the West Pacific (Wang and Picaut 2004), were occasionally 
detectable during NH spring months for Rainfall Amount (Fig. 8a), 
Maximum Dry Consecutive Days (Fig. 8h), and Extreme Rainfall In-
tensity (Fig. 8i). Such a result is consistent with previous expectations 
that ENSO is associated with detectable impacts on tropical Pacific 
rainfall, largely due to its impacts on features such as the ITCZ and SPCZ 
(Salinger et al., 2001; Folland et al., 2002; Xie et al., 2018). 

The significance of ENSO for these monthly trends of rainfall in-
dicators should, however, not be overstated, since its influences were 
frequently difficult to detect, as was the relevance of different IPO 
phases (Fig. 8). Despite the apparently minor influences of the IPO and 
ENSO on these trends (as was largely the case in analyzing their seasonal 
and annual trends), multidecadal decreases in monthly rainfall in-
dicators were frequently exhibited, with all time-series charts in Fig. 8 
possessing statistical significance (p < 0.1). This statistical significance, 
along with that seen in Figs. 1–7 (white triangles), is prevalent enough 
that it is worth considering what other climatic processes could offer 
explanations for them. 

One possible process is climate change, with it being commonly 
accepted that increased global temperatures generally lead to less 
frequent but more powerful rainfall events (Trenberth 2011; Bindoff 
et al., 2013; Donat et al., 2016), evidence of which can somewhat be 
seen in Figs. 1–3 (higher Rainfall Amount, lower Maximum Dry 
Consecutive Days). Whilst changes in rainfall under climate change are 
likely to be small over these gauge locations, versus the larger projected 
increases over the Central/Eastern Tropical Pacific (Bell et al., 2013), 
ENSO-related rainfall in this region is expected to decrease in amount 
and become less variable (Huang and Xie 2015). The statistically sig-
nificant negative trends in Fig. 8 suggest that decreases in ENSO-related 
rainfall might already be happening. The ITCZ, another process that 
influences tropical Pacific Rainfall, could also be affected by climate 
change, whether in terms of a narrowing of its convergence zone (Byrne 
and Schneider 2016) or a strengthening of its deep convection (Bony 
et al., 2013), perhaps contributing to increasing rainfall intensity over 
these islands. 

However, caution should be taken when attributing climate change 
(or climate variability cycles) to the trends presented in this work. 
Physical reasons for this caution include the concern that rain gauge 
records do not accurately represent a wider region’s rainfall patterns 
(Bell and Kundu 2003), the lack of consensus about the role of orography 
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in influencing rainfall over small islands (Griffiths et al., 2003; Hopuare 
et al., 2015), and the role of stochastic rainfall variability (e.g. tropical 
cyclones and isolated convection) in producing the observed trends 
(Greene et al., 2007). Moreover, the inconsistent sign of the statistically 
significant trends, despite these islands’ relative proximity (Figs. 1–7), 
makes attribution challenging within the current study’s scope, as does 
possessing data from only 8 rain gauges and a short GPCP data record. A 
comprehensive attribution study that links rain gauge-based tropical 
Pacific rainfall trends to climatic processes is therefore recommended as 
future work on this topic. 

Finally, this study compared the rain gauge results with the annual 
and seasonal trends of the same seven rainfall indicators using GPCP 
observations (Table 2 and Appendix A1-4). What this comparison 
revealed was occasionally large discrepancies between rain gauge and 
GPCP-derived trends of the same indicators, with these discrepancies 
varying considerably when comparing trends computed at different lo-
cations. For instance, differences between the two datasets were rela-
tively small at islands such as Pohnpei and Guam for indicators like 
Maximum Dry Consecutive Days and Extreme Rainfall Frequency, but 
then much larger for Palau when computing Rainfall Amount. Such 
large differences between rain gauge and GPCP-derived rainfall in-
dicators are consistent with previous work that also found these differ-
ences to exist (Hughes 2006; Salio et al., 2015). A study of rain gauge 
versus satellite data comparison over the tropical Pacific Ocean by 
Bowman (2005) showed that, over several years of recorded observa-
tions, the root-mean-squared difference between these two means of 
measuring rainfall can be as much as 200–300%. Given the differing 
spatial scale of the two estimates, such large disparity over a wide area 
of the Pacific Ocean could partially explain why measured rainfall 
presented in the current study differs across locations. 

The GPCP observations themselves do possess some agreement with 
previous studies of long-term satellite-derived rainfall trends. Kruk et al. 
(2015) showed that recent trends in tropical Pacific rainfall have been 
increases closer to the western boundary of the Pacific Ocean and de-
creases further away from coastlines. This finding shows some indica-
tion of having been replicated, especially when examining autumn 
increases in Rainfall Amount (Appendix A4) at more western locations 
(e.g. Palau and Yap) and comparing these to the decreasing trends found 

at locations to the east (e.g. American Samoa and Kwajalein). The GPCP 
trends produced in this work can therefore be verified to an extent. 
However, since satellite-derived rainfall trends were not a primary focus 
of the current study, the comparison of these trends against those 
derived from rain gauges was somewhat cursory. Future work could 
explore a more in-depth analysis of calculating multiple rainfall in-
dicators from GPCP data, especially once enough years of data to assess 
satellite-derived rainfall climatology are available. 

What the results from the current study have shown is that (occa-
sionally statistically significant) reductions in the amount of rainfall and 
increases in the extremity of drought events have occurred at multiple 
islands and atolls across the tropical Pacific Ocean, resulting in up to 
hundreds of millimeters of annual rainfall lost when comparing the start 
and end of the period of study. The consequent effects on the economy 
and livelihoods of the inhabitants of these islands are of serious concern, 
especially if these reductions continue or exacerbate later into this 
century. 
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Appendices. 

A1 – Same as Table 2 but for winter trends in GPCP and rain gauge-derived rainfall indicators 
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A2 – Same as Table 2 but for spring trends in GPCP and rain gauge-derived rainfall indicators

A3 – Same as Table 2 but for summer trends in GPCP and rain gauge-derived rainfall indicators 
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A4 – Same as Table 2 but for autumn trends in GPCP and rain gauge-derived rainfall indicators
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